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The squared reciprocal tortuosity �−2=D /D0 for linear diffusion on lattices and in pores in the Knudsen
regime is calculated analytically for a large variety of disordered systems. Here, D0 and D are the self-diffusion
coefficients of the smooth and the corresponding disordered system, respectively. To this end, a building-block
principle is developed that composes the systems into substructures without cross correlations between them.
It is shown how the solutions of the different building blocks can be combined to gain D /D0 for pores of high
complexity from the geometrical properties of the systems, i.e., from the volumes of the different substructures.
As a test, numerical simulations are performed that agree perfectly with the theory.
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I. INTRODUCTION

Diffusion in random media has been a subject of large
interest in the past decades �for some latest reports, see, e.g.,
�1��. In the last years, the interest has focused on the experi-
mentally accessible subject of diffusion of gas molecules in
pores �see Fig. 1�, as, e.g., the human lung �2�, linear silicon
nanochannels �3� or zeolithes, and other micropore and nano-
pores �4–6�. As recent progress in synthesizing nanostruc-
tured porous materials has provided the options of designing
specific pore architectures �7�, an exact analytical under-
standing of the diffusion process is of great importance. Of
particular interest is the tortuosity factor �=�D0 /D that de-
scribes the relation between the diffusion coefficients D and
D0 of systems with and without geometrical disorder �8�.
Both D and D0, can be gained by studying either the trans-
port or the self-diffusion problem, where in the Knudsen
regime, the self- and the transport diffusion coefficients are
the same for a given geometry. Theoretical calculations of D
on complex pores have mostly been based on numerical
simulations of the transport �9–12� or the self-diffusion prob-
lem �11–15� and/or phenomenological or semianalytical ap-
proaches �16�, whereas exact analytical results of specific
pore geometries have only been provided along loopless
curved one-dimensional paths �17� and for systems with
dead ends �18,19�. In loopless curved systems �see Figs. 2�b�
and 2�e��, the tortuosity factor is determined by the longer
path, the particle has to travel along the curve in order to
overcome a smaller distance in x direction, and the diffusion
time of a particle in pores with dead ends �as shown in Figs.
2�c� and 2�f�� is increased by detours into the dead ends that
do not contribute to the diffusion along the x direction.

The purpose of this work is to create an approach, based
on the self-diffusional problem, for the exact analytical cal-
culation of D /D0 of more complex systems, as the ones in
Fig. 2. To this end, we consider the lattice problem and its
connection to diffusion in linear pores in the Knudsen regime
�20� �see below�. To calculate D /D0, we decompose the con-
sidered complex systems �see Fig. 3, for examples� into sim-
pler exactly solvable geometric substructures �building
blocks� without cross correlations between them and show
how the results of the single subunits must be combined to
calculate D /D0 as a function of simple geometrical data, i.e.,

of the different lengths, widths, and volumes, as given in
Table II. We verify our results by numerical simulations that
agree perfectly with the theoretical predictions. In this work,
we are only interested in systems where a fully analytical
treatment is possible, i.e., where all individual building
blocks can be solved analytically. However, we would like to
point out that this method can also go beyond these cases by
combining analytical and numerical data of different build-
ing blocks.

The paper is organized as follows. In Sec. II, we present
the random walk on a lattice and the diffusion problem in
pores, while the underlying theory for the calculation of D
for systems made of various building blocks is explained in
Sec. III. In Sec. IV, we present the theoretical results and
verify them by numerical simulations. In the last Sec. V, we
discuss the results and give an outlook.

II. DIFFUSION ON LATTICES AND IN PORES

In a linear random walk, a particle jumps inside a
d-dimensional lattice �see left column of Figs. 2 and 3� and
we are interested in its displacement in x direction. We con-
centrate on problems, where despite an irregular structure of
the systems the long-time diffusion stays normal, which
means that D for long times is defined by the Einstein rela-
tion,

lim
t→�

�x2�t�� = 2Dt , �1�

where the mean-square displacement �x2�t�� is the squared
distance, a particle has traveled during time t in x direction.
For anomalous diffusion, as, e.g., on fractal structures, we
refer to the literature �21–24�. For simplicity, we concentrate
on cubic �square� lattices, where in the absence of disorder

FIG. 1. �Color online� Sketch of the diffusion process inside a
�smooth� pore. The particle is reflected with different angles be-
tween the pore walls, leading to jump lengths of very different
sizes.
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each lattice site has 2d neighbors and on unbiased walks,
where jumps to the neighboring sites occur with equal prob-
ability. Disorder is created by the removal of sites or of links
between neighboring sites. On a lattice, a walker chooses one
of the 2d possible directions for the following jump at ran-
dom. If the link to the chosen neighbor is existing, the walker
jumps, thereby, performing a jump of length a �lattice con-
stant� during a time step �. If the link has been removed, the
walker stays for this time step where it is �waiting time�.

Diffusion in pores �right column of Figs. 2 and 3� repre-
sents a more complex problem where, in general, the track of
the gas molecules through the pores depends on the colli-
sions between the gas molecules as well as on the collisions
of the gas with the pore walls. In cases where Knudsen dif-
fusion �20� dominates, as it has been shown in various trans-
port situations through porous media �3,25�, the interactions

of the molecules with the pore walls play the crucial role and
the intermolecular collisions can be neglected. In this case,
the molecules perform a series of free flights and change the
flight direction independently from each other after collisions
with the pore walls, as shown in Fig. 1. Therefore, the prob-
lem is reduced to many independent individual flights. In this
work, we concentrate on Knudsen diffusion under Lambert’s
reflexion law in three-dimensional regular and irregular
pores �4,11,12,15�. In this picture, the particle is absorbed
from the wall after collision and after a very short time �that
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(d)

(f)

(e)

FIG. 2. �Color online� Sketch of the geometries of special well-
known subunits for lattices ��a�–�c�, left column� and the corre-
sponding pores ��d�–�f�, right column�, i.e., regular units ��a� and
�d��, curved units ��b� and �e��, and systems with dead-end units ��c�
and �f��. In the pores, all x channels �red dashed lines� are of square
cross section �with side length h� and up to 1000 of these �identical�
blocks are sticked together to account for an infinite elongation into
the x direction. For further geometric details, see the caption of
Table I.
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FIG. 3. �Color online� Geometries for lattices �left column� and
the corresponding pores �right column� that are analyzed by the
building-block principle: ��a� and �e�� curved system with dead
ends, ��b� and �f�� curved system in parallel with a channel, ��c� and
�g�� curved system intersected by a channel, and ��d� and �h�� sys-
tem of two intersecting curves. All x channels �red dashed lines� of
pores are of square cross section with side length h and up to 1000
of these �identical� blocks are sticked together to account for an
infinite elongation into the x direction �for further geometric details,
see Table II�.

TABLE I. Table of the geometries and the analytical results of the simple units from Fig. 2. Upper half: lattice systems; lower half: pores.
All units are the same as in Table II.

Fig. Sym. �x �y �x,2 �y,2 d Vx,1 V D /D0, Eq.

2�b�, 6�a� � �black� 400 19 800 838 0.91, �4�
2�b�, 6�a� � �blue� 200 49 400 498 0.65, �4�
2�c�, 6�a� � �red� 10 5 4 4 1 10 32 0.31, �3�
2�e�, 6�b� � �black� 400 20 798 836 0.91, �4�
2�e�, 6�b� � �blue� 200 50 398 496 0.64, �4�
2�f�, 6�b� � �red� 20 9 3 3 1 20 61 0.33, �3�
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is neglected� re-emitted into a random direction, where the
new direction �� �−� /2,� /2� to the normal component of
the surface occurs with probability dP�� ,���cos �d�,
where d�=sin �d�d� in d=3.

It is clear that disorder slows down the diffusion process,
leading to a smaller value of D as compared to D0 of a
smooth system. Quantitative calculations that connect D /D0
to simple geometrical properties, as volumes and lengths of
the different segments exist for loopless curved geometries
and for systems with dead ends �dangling bonds� that are
connected to the main channel by a thin entry, examples of
which are both shown in Fig. 2.

In loopless curved geometries �17� �see Figs. 2�b� and
2�e��, the effective length � �also called “chemical length”
�23,24�� of the path a particle has to travel in order to come
from A to B is larger than the x distance between the same
points �see Fig. 4 for an illustration�. Therefore, normal dif-
fusion with ��2�t��=D0t applies for the effective length and
with the relation �x�t�2�= �x /��2���t�2� between x and �
space, one finds D=D0�x /��2=D0�Vx /V�2 �17�, where the
last expressions refer to pores with Vx and V, as defined
below. In dead-end geometries �see Figs. 2�c� and 2�f��, as it

was first discussed in �26�, the walker only proceeds in the x
channels �indicated by the red dashed lines in Fig. 2�, while
the time inside the dead ends increases the total time t of the
walk without increasing �x2�. Quantitative considerations
�18,19,22� show that D /D0=Vx /V, with the volume Vx of the
x channels and the system volume V �of channel plus dead
ends�.

In this work, we want to combine these well-known sys-
tems to more complex geometries by connecting them using
additional segments or by intersecting them directly with
each other, thereby, forming networks. To this end, we show
how a system of different subunits, where the diffusion may
be �i� uncorrelated �as in a straight channel�, �ii� strongly
correlated �as in dead ends, where each jump is compensated
by a jump into the opposite direction�, and �iii� intermedi-
ately correlated �as in curved channels, where correlated
forward-backward jumps occur at all times� must be com-
bined to obtain D /D0 and thus �. The approach uses the
self-diffusion picture but clearly, as the self-diffusion and
transport diffusion coefficients of a given geometry are
equal, is also valid for transport diffusion.

III. CALCULATION OF THE DIFFUSION COEFFICIENT

A. General considerations

Generally, we can write �x2�t�� after N time steps as

�x2�t�� =	
�
i=1

N

	i�2 =	�
i=1

N

	i
2 +	2 �

i,j
i

N

	i	 j , �2�

where 	i and 	 j are the single jump lengths in x direction. In
the following, we call the first term of the right-hand side of
Eq. �2� the “quadratic term” and the second term the “corre-
lation term.”

TABLE II. Table of the geometries and analytical results based of the combined systems of several building blocks from Fig. 3. Upper
half: lattice systems; lower half: pores. All lengths on lattices and in pores are given in units of the lattice constant a and the pore diameter
h, respectively. D is referred to the value D0=a2 / �4�� for the lattice �d=2� and to D0=0.37hv0 for the pores. All omitted numbers are equal
to 1.

Figs. Sym. �x �y �x,2 �y,2 Vx,1 VC Vx,2 V D /D0, Eq.

3�a�, 7�a� � �black� 200 19 200 1 400 438 638 0.57, �6�
3�a�, 7�a� � �red� 200 49 200 1 400 498 698 0.46, �6�
3�a�, 7�a� � �blue� 200 89 200 1 400 578 778 0.36, �6�
3�b�, 7�a� � �black� 200 59 98 9 400 498 398 953 0.75, �7�
3�c�, 7�a� � �black� 20 20 10 10 30 70 30 98 0.44, �7�
3�c�, 7�a� � �red� 20 20 20 10 40 80 40 118 0.51, �7�
3�d�, 7�a� � �black� 20 20 10 40 98/78a 40 176 0.21, �8�
3�d�, 7�a� � �red� 10 10 10 40 80/60a 40 136 0.35, �8�
3�e�, 7�b� � �black� 200 20 200 398 438 639 0.57, �6�
3�e�, 7�b� � �red� 200 50 200 398 496 699 0.46, �6�
3�e�, 7�b� � �blue� 200 90 200 398 576 779 0.35, �6�
3�f�, 7�b� � �black� 200 20 10 398 436 400 874 0.87, �7�
3�g�, 7�b� � �blue� 200 6 14 399 435 397 832 0.92, �7�
3�h�, 7�b� � �red� 200 21 19 400 467/437a 400 904 0.78, �8�
aVc,1, Vc,2.

FIG. 4. �Color online� Sketch of the construction of the chemi-
cal distance � between the points A and B for the curved geometry.
The length of the x distance x is indicated at the bottom of the
figure, while � is the length of the red curved line.
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To calculate D directly from the geometry of the system,
we refer to the well-known principles that �i� the particle
concentration �as well as the gas pressure� is identical all
over the system and �ii� correlations among different walks
do not exist �Knudsen condition�. Condition �i� tells us that
in the average over many walks, all places of the system are
visited with equal probability. This is true for real experi-
ments as well as for computer simulations, provided that the
starting point is chosen with equal probability among all
sites.

As the sequential order of the single time steps does not
play a role for evaluating the quadratic term of Eq. �2�, the
single steps of the sum, even if they belong to different
walks, may be interchanged. Then, we can replace the time
average of the quadratic term by the ensemble average and
describe it solely by all jumps that occur at the same time on
all places, i.e., by the geometric properties of the system and
independently of the track of the single walks. We thus re-
place the quadratic term by ��i=1

N 	i
2�=N�	2�, where �	2� is the

mean quadratic jump length in x direction over all N jumps.
The total time of the walk is t=N�t�, with the average dura-
tion of the time steps �t�. Jumps into the y and z directions
count as waiting times, as they increase t without increasing
x.

On lattices, all time steps are equal and �t�=�, whereas
�	2� depends on the number of waiting times. For the diffu-
sion coefficient D0 of a d-dimensional ordered lattice of lat-
tice constant a �where the correlation term is zero�, we find
�	2�=a2 /d and therefore D0=a2 / �2d��. On a disordered lat-
tice, on the other hand, some jump trials into the x direction
find no bond and lead to additional waiting times. Further-
more, the correlation terms may give an additional negative
contribution and, accordingly, D�D0.

In pores, the jump lengths and time steps are not constant
and therefore D0 depends on the cross section of the pore.
For the smooth pore with square surface section of side
length h �see Fig. 2�d��, D0= �	2� / �2�t�� is numerically found
as �0.37hv0, with the velocity v0 of the particle along the
trajectory �see also �12�� and with h as unit length. �The time
steps can be defined as �=h /v0�. The generalization to cir-
cular or rectangular cross sections is straightforward but not
the purpose of the present work. Therefore, we refer all val-
ues of D in pores to the value D0 of the corresponding
smooth pore with unit length h of Fig. 2�f� that we use as the
basic element. Smooth pores with side length nkh possess the
diffusion coefficient nkD0.

B. Building-block principle

We now turn to more complex geometries. The first step
for a rigorous treatment is the decomposition of the consid-
ered system into well-known analytically treatable subunits k
as, e.g., A: smooth x channels, B: loopless curved units, C:
dead ends, and D: vertical links. The subunits must be cho-
sen without cross correlations, i.e., such that the steps a
walker performs in a given subunit do not influence the steps
in another unit or during a second visit of the same unit.

The relative time tk / t the particles spend in a given unit k
can be expressed by tk / t=Nk /N=Vk /V, with the relative

number of sites Nk /N �in lattices� or the relative volume
Vk /V �in pores� of the kth unit. We also need the relative time
the particles spend in the x channels �indicated by the red
dashed lines in Figs. 2 and 3�, tx,k / t=Nx,k /N=Vx,k /V, where
Nx,k and Vx,k are the number of sites and the volume of the x
channels of the kth unit, respectively. Dead ends, even if
oriented in x direction, do not count as x channels. In the
absence of cross correlations between the different units,
�x�t�2� can be gained from Eq. �2� by the sum over all qua-
dratic terms and correlation terms of all units k. As the mean
quadratic jump length �	2�k of the kth unit normally grows
quadratically with the pore thickness nkh �except for possible
cut-off effects in the jump-length distribution, see below� we
have �	2�k=nk

2�	2� and get for the quadratic terms with t
=N�t�

�
i

	i
2

2t
= �

k

Nx,k�	2�k

2N�t�
= �

k

nkD0
Nx,k

N
= �

k

nkD0
Vx,k

V
, �3�

where the index i runs over the time steps and k runs over the
geometric subunits. For simplicity, we investigate networks
with units of identical thickness here, i.e., all nk=1. If all
correlation terms of all units are equal to zero, as, e.g., for a
system of parallel pores, D /D0 can be gained from Eq. �3�.
Otherwise, we also have to calculate the correlation terms of
Eq. �2�, which can be done analytically for several types of
building blocks. Here, we treat the following cases:

�A� The simplest units are regular ordered lattices and
straight channels �see Figs. 2�a� and 2�d��, where each jump
is followed by a positive or a negative x jump with equal
probability. It is common knowledge that the correlation
terms of these subunits are 0.

�B� “Curved geometries” �see Figs. 2�b� and 2�e�� consist
of one loopless curved backbone, where the particles per-
form a large number of forward-backward jumps before they
pass the corners. So, the x jumps are correlated because posi-
tive x jumps to corner sites are more likely followed by
negative �than by other positive� x jumps. As described
above, D can be calculated by considering the problem in �
space, where �k is the effective or chemical length of the
curve k. So, if the kth unit is a loopless curve, D of this unit
alone can be written as �17�

D = D0
 xk

�k
�2

= D0
Vx,k

Vk
�2

, �4�

where for the case of pores, �k and xk have been replaced by
the total volume Vk and the x volume Vx,k. From Eqs. �1�–�4�,
we find the correlation term of the loopless curves,

2 �
i,j
i

N

	i	 j = 2tk
D − D0
Vx,k

Vk
� = 2tkD0
Vx,k

Vk
�2

− 2tkD0
Vx,k

Vk
,

�5�

where tk is the total time the particle spends in k. As Vx,k
�Vk, the correlation term is negative, but its absolute value
is smaller than the quadratic term. So, diffusion is not sup-
pressed, but a given jump changes the probabilities for the
directions of the next jump�s� resulting in a slowing down of
the diffusion.
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�C� The simplest correlated subunits are dead ends
�19,26�, i.e., units that are connected to the other parts by a
thin entry �see Figs. 2�c� and 2�f��. The entry and the exit
point to the dead ends coincide or otherwise speaking, the
whole path inside the dead ends is considered as pure delay.
This means that the correlation term cancels with the qua-
dratic term, so that here, the diffusion is suppressed and both
terms can be set to zero �even if, strictly speaking, none of
them is zero, but one term has the negative value of the
other�.

�D� In straight z or y paths �“vertical links”�, x jumps are
not possible and, therefore, the quadratic as well as the cor-
relation term are both equal to zero. Vertical links only in-
crease t without increasing x and therefore act in the same
way as dead ends. Indeed, these paths need not even be com-
pletely straight—it is sufficient if the lower and the upper
entrance points possess the same x value.

We now turn to complex systems that can be considered
as combinations of the described systems. We discuss in
which way the subunits �A�–�D� can be combined without
generating cross correlations between them, so that the com-
bined geometries can be simply treated by summing over all
quadratic and all correlation terms of all blocks.

�i� Dead ends �C� can be added to all systems at arbitrary
positions �see Figs. 3�a� and 3�e��. As we have seen, they do
not bring new terms, but increase t. �ii� Several infinite units,
e.g., �A� and �B�, can be connected by vertical links �D� to
form a simple network of interconnected parallel pores �see
Figs. 3�b� and 3�f��. There are no cross correlations between
�A� and �B� as long as both are infinitely elongated into the x
direction: if a random walker changes from �A� to �B� �or
vice versa� it can continue its path in �B� into both directions
with equal probability, so that no step in �A� influences later
steps in �B� and vice versa. Also x correlations between �A�
and �D� �or�B� and �D�� cannot exist, as x jumps in �D� either
do not exist �if the link is completely straight� or exist in
pairs, where positive and negative steps always cancel.
Therefore, terms �xixj� with xi or xj in �C� are either zero or
appear with a negative counterpart. So, also systems of sev-
eral units �A� and/or �B� connected by vertical links can be
calculated by the building-block principle. �iii� A more com-
plex combination appears, when two infinite units �A� and
�B� are intersected without intermediate pieces, as shown in
Figs. 3�c�, 3�d�, 3�g�, and 3�h�. Again, no cross correlations
between �A� and �B� take place �by the same argument as
before� and the total system can again be treated by the
building-block principle. �iv� Unfortunately, not treatable this
way are structures, as shown in Fig. 5�a� involving finite
pieces creating short cuts inside the same structure �B�, be-
cause in those cases new correlations are created �inside �B�
as well as between the finite units�. �v� Also nontreatable in
this way are systems where the connection between two sub-
units contains finite x paths, i.e., where the lower and the
upper entry points do not have the same x value �see Fig.
5�b��, because in those cases cross correlations between the
different finite units take place. We would like to point out,
however, that in both cases new subunits could be defined,
calculated numerically, and then combined with the analyti-
cal results of other exactly treatable building blocks. But this
goes beyond the purpose of the present paper.

In summary, there is a large variety of combinations of
well-known building blocks, leading to quite complex geom-
etries, from which D /D0 can be calculated analytically,
which we will show in detail in Sec. IV and verify by nu-
merical simulations. The method is equally applicable to ran-
dom walks on lattices and to diffusion in pores.

C. Numerical calculations

The analytical calculations �explained in the next section�
are compared to numerical simulations on the systems shown
in Figs. 2 and 3. The particle flow takes place along the x
direction and the figures of the geometries are meant to be
infinitely elongated along the x axis. The simulations have
been performed for different geometric details �as listed in
the tables� and 100–1000 elementary units have been sticked
together. For technical reasons, namely, for a faster genera-
tion of the systems in the computer simulations and for the
presentation of the results in tables, the systems are periodic,
but all calculations are valid for completely disordered struc-
tures as well. In order to choose the starting point among all
lattice sites with equal probability, periodic boundaries
should be chosen in nonperiodic systems to enable walks of
arbitrary length to both sides of the starting point. In the
periodic systems calculated here, it is sufficient to choose the
starting point with equal probability among all sites of one
unit.

The computation of the random walk on a lattice is well
known, so that we refer to the literature �see, e.g., �23,24��.
For the diffusion processes through pores, all walls of a
given geometry have been stored and ordered according to
their position and orientation �normal vector n��. For the com-
putations of the particle flights from wall to wall with a given
direction, the possible intersections of the flight trajectory
with walls of increasing distance from the particle position
have been computed. Once an intersection point is found, the
computation can be stopped for all walls of the same n� but
with larger distance to the actual particle position. The com-
putation of �x2�t��, once the collision point with the next wall
has been found, is straightforward and takes place as on a
lattice.

Note that for the subunit of the curved systems �Fig. 2�e��,
some specialties exist in pores �as compared to lattices� that
we mention briefly. First, due to Lambert’s reflexion law, the
probability for long jumps into the x direction is slightly
different when starting on a vertical and on a horizontal wall,

(b)(a)

FIG. 5. Geometries �shown here as lattices� that cannot be
treated by decomposing them into the building blocks �A�–�D�
without cross correlations between them: �a� curve with finite con-
nections between itself; �b� system, where two possible building
blocks are interconnected by steplike units containing finite hori-
zontal pieces.
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which should influence the results of rough systems slightly.
However, in three-dimensional pores, these differences are
not large, so that we neglect them here. �They would be more
important in 2d pores; see Ref. �11�.�. Second, finite x seg-
ments lead to an upper cutoff of the jump lengths distribution
P�	i� and therefore to a modified value of �	2�k that cannot be
taken into account analytically. Clearly, the correct jump-
length distribution could be determined numerically for each
system, but this is not the aim of the present work. Therefore,
we choose systems with lengths of the x segments larger than
the average jump length of the smooth system, so that both
distributions P�	i� are nearly the same. The other segments
�oriented along the y or z direction� may be of arbitrary
lengths because there, the cutoff of the jump lengths leads to
additional factors in the relation ��2�t��=D0t and Eq. �4� that
cancel.

We test the numerical calculations on the simple units of
Fig. 2, i.e., on one smooth system, one system with dead
ends and one curved system and compare them to Eqs. �3�
and �4�, respectively. The results are shown in Fig. 6 for
lattices and pores and agree perfectly with the expectations.

IV. NETWORKS OF DIFFERENT BUILDING BLOCKS

In this section, we apply the building-block principle to
the geometries of Fig. 3. To this end, we need for each sub-
unit k the number of sites Nk or the volume Vk �for lattices
and pores, respectively� as well as the number Nx,k or the
volume Vx,k of the x channels �red dashed lines in Fig. 3, see
also above�. Clearly, for the total system V=�kVk and Vx
=�kVx,k applies.

As a first example, we consider a curved system with
additional dead ends �see Figs. 3�a� and 3�e��. In this case,
the total system consists of two units k=1 �curve� and k=2
�dead ends� with the x volumes Vx,1�Vx,C, Vx,2=0, the vol-
umes V1�VC, V2�Vd, and the total volume V=VC+Vd. As
described, the contributions of the dead ends cancel, so that
we obtain D /D0 by adding the quadratic term �3� and the
correlation term �5� of VC, yielding with Eq. �1�, nk=1 and
tk / t=Vk /V,

D =

�
i

	i
2

2t
+

�
i,j
i

	i	 j

t
= D0

Vx,C
2

VVC
. �6�

As a second example, we consider the curved system in
parallel with a channel �see Figs. 3�b� and 3�f��, to which it is
connected by additional thin vertical links. This time, the
system is composed of three subunits k=1 �curve�, k=2
�channel�, and k=3 �links� with the x volumes Vx,1�Vx,C,
Vx,2�Vx,Ch, Vx,3=0, the volumes V1=VC, V2=Vx,2=Vx,Ch,
V3�Vl, and Vx=Vx,C+Vx,Ch, V=VC+VCh+Vl. With both qua-
dratic terms �Eq. �3��, the correlations term of Eq. �5�, nk
=1 and tk / t=Vk /V, we find

D = D0
Vx,Ch

V
+ D0

Vx,C
2

VVC
. �7�

In both examples, the dead ends as well as the vertical links
only enter by increasing the total system volume.

As a third example, we consider the system of Figs. 3�c�
and 3�g�, consisting of the same two subunits as above. But
this time, instead of being connected by additional links, they
intersect each other directly, resulting in a more complex
configuration as before. Also this system, even if it looks
very different from the one in Figs. 3�b� and 3�f�, is de-
scribed by Eq. �7� and the lack of additional links only in-
fluences the total volume V that is now equal to V=VC
+VCh.

As the last example, we intersect two curves with vol-
umes V1�VC1

, V2�VC2
, x volumes Vx,1�Vx,C1

, Vx,2�Vx,C2
,

and V=VC1
+VC2

, Vx=Vx,C1
+Vx,C2

. We get D /D0 by adding
the quadratic and the correlation terms of both systems,
yielding

D = D0

Vx,C1

2

VVC1

+ D0

Vx,C2

2

VVC2

. �8�

We can see that in all described cases, the ratio D /D0 can
be directly obtained from purely geometrical data without
performing numerical simulations. If we consider lattices in-
stead of pores, all values of V, Vk, and Vx,k have to be re-
placed by the respective values of N, Nk, and Nx,k.

Nevertheless, we performed numerical simulations over
an average of 105 systems �except for the pore systems of
Eqs. �7� and �8�, where due to larger calculation times, an
average over only 103 systems has been performed� to put
the relations �6�–�8� to a direct test. The results of the simu-
lations �symbols� are shown in Fig. 7 and compared to the
theoretical values �straight lines� for systems of different
geometrical details, as listed in Table II. The figures show the
results for lattices �Fig. 7�a�� as well as for pores �Fig. 7�b��,
and in all considered cases, the agreement between numeri-
cal and theoretical data is excellent. �Larger fluctuations in
the pore realizations of the two last systems are due to the
poorer statistics.� Clearly, also more than two units can be
combined and additional dead ends can be easily included to
all considered systems to increase V, i.e., the same calcula-
tion scheme can also be applied to various other geometries,
including real large networks.

V. CONCLUSION AND OUTLOOK

We have presented an analytical method to calculate the
tortuosity factor � that describes the decrease in the diffusion
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FIG. 6. �Color online� The numerical values of D /D0 �symbols�
of some simple units are plotted versus t /� and compared to the
theoretical values �straight lines� for �a� different lattice geometries
�see Figs. 2�a�–2�d�� and �b� the corresponding pores �see Figs.
2�e�–2�g�� of different lengths of the segments. For the symbols and
the geometric details, see Table I.
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coefficient D in the presence of disorder as compared to the
diffusion coefficient D0 of a smooth system for a large vari-
ety of complex disordered systems. To this end, we have
developed a building-block principle that is based on a care-
ful analysis of the correlation effects of the diffusion process.
For the systems of this work, we could express � simply by

the volumes of the different substructures. The procedure has
been demonstrated on many different systems and it is clear
that many more systems can be constructed accordingly.

We only considered systems, where an analytical treat-
ment is possible for both, the random walk on lattices and for
the pore diffusion. However, the building-block principle can
also be combined with correlations obtained from numerical
simulations, as, e.g., dangling bonds with a thickness �
h
�where the correlation term does not exactly cancel with the
quadratic term�, curved systems where the x paths are small
or backbones of varying thickness. So, additionally to the
systems considered here, a large variety of pores can be
manufactured and understood by combining building blocks
of numerically and exactly obtained correlation terms along
the lines of the present paper.

We also pointed out that not all types of combinations
between subunits are suited for this treatment—if cross cor-
relations between the subunits are created, the described
method fails. We showed several examples, where this is the
case. However, a large variety of quite complex systems can
be treated in the way described and it is straightforward to
cross, e.g., many loopless curved systems to get real net-
works that can be calculated by this building-block principle.
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